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SUMMARY

The results displayed in this report demonstrate the feasibility of
handling moving mass problems by the finite element displacement method.
There is no apparent reason why the method could not be applied to gun
tuoe geometries - should engineering fund allocations be made available
for this purpose. (Nearly all of the work contained im this report was
funded through basic in-house research allocations.)

In the interest of iiproved efficiency, more detailed study should
be given to the choice and use of integration algorithms. In the IBM
version of Hamming's method (employed in this work), the user is allowed
certain freedom to choose error weights. This choice can affect ac-

curacy and run times and therefore should be arrived at on a rational

basis.
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INTRUDUCTION

Within the U,S. Army there has always been an interest in the bal-
listic response of the gun tube and projectile during firing. This
interest has several justifications - not the least of which are the
effects of tube motion on round accuracy and the reactions inducea
between the interior bore surface and the projectile - the latter have-
ing to do with the structural integrity of the projectile casing and
the wear caused by excessive projectile/bore interface pressures,

During 1974 this laboratory reported a NASTRAN finite element anale
ysis of the axisymmetric response of an unconstrained M113 gun tube to
the ballistic pressure/time loading corresponding to a 'zone three'
charge. Also computed in detail was the transverse response to the
curvature-induced 'Bourdon' load, Less detailed cglculations alluded
to the potential response which could be expected from the tube as a
result of the moving concentrated weight of the projectile along the
bore surface. Finally, hope was expressed for future progress in hand-

ling the various aspects of the moving projectile mass,

‘The Importarce of the Moving_ﬂass Probiem

In more conventional applications the ditference in the rcsponse of

a structure to a moving mass and to the weight of this mass is not very

WINPT IEY YT

great, llowever, if the moving mass is an appreciable fraction of the
total structural mass of the problem - or if the velocity of the mass
is very largs, an unconventional structural problem is defined in which

the difference may be quite pronounced, There ae at least two illustra.




tions which come to mind: (1) - a railroad train crossing a long
trestlel(in which the moving mass commares to the mass of the trestle)
and (2) - a nrojectile traversing a long tube (in whigh uncommonly
high velocities are evident), We are professionally ;nterasted in
the latter as a knowledge of the resnonse of a tube to & moving mass
leads immediately to a good estimate of the resultant interface pres-
sure between the proiectile and the hore surface - anhimportant first
stap toward the ultimate understanding of the causes of bore and

muzzle wear problems and promer design of projectile casings and

rotating bands. The importance of the structural resmonse of the

tube in altering the round trajectory is alsn apparent. Thus treat.

ment of the moving mass nroblem has a wide base of military justi-

fication.

State of the Art in 'oving 'fass Problems

Although the method of computation reported herein is immediately
apnlicable to a finite element beam model of a gun tube, it is first
nacossafy to assess the accuracy of the method by anplying it to &
problem which has received prior treatment and reported in the liter-
ature, The most common base for comparison has been the exnerimental

2
wor). of Ayre, Jacobsen, and Hsu = nresumahly hacause of the lack of

(1) Stokes, Sir George G., "Discussion of a Differential Equation Re-
lating to the Breaking of Railway Bridges," Trans Cambridge Phil Soc,
8, p. 707, 1849

r;) Ayre, R.S., Jacobsen, L.S., and Hsu, C.S., "Transverse Vibration
ot Cne and of Two Span Beams Under the Action of a Moving Mass Load,"
Prcc. of First National Congress on Applied Mechanics, June 1951




any simple analytical solution with which to corpare results, ( The
analytical solution of Schallenkamm is not convenient for general
application - this will be mentioned further on in the report)

This report is therefore concerned with nredicting the resnonse
of a uniform,simply sunported beam while subiscted to a concentrated

mass moving along its length at constant velocity under the influence

of gravity, The method emnloyed, howevur, is immediately applicable
to time variant mass velocities as wnll as other houndary conditions
and variable beam cross section,

Before commencing with the detz)ls nf the mnving mass prohlem it
may he worthwhile to point out the theoretical differences between
vrohlems in which masses are in motion and those which involve only
moving forces,

To begin with, moving loads* are but speciai cases of time and
snace variant forcing functions f(x,t) for one dimensional structures
such as beams, The customary beam equation of forced motion can be
written 3:

Mo+ Lw e £(2,t) oo (1)
where '! and L are operators:

2 2
M = pA; L= (EIdD /3x)

(3) Tong, K., Theory of ‘lschanical Vibrations , J, Wiley § Sons, 1960
v, 300

* The term 'load' is intended to be general and to reprssunt applied
loads such as moving forces and/or masses




Saiand

Solving the homogensous form of equation (1) (f(x,t) = 0), i,e,, the
free vibration problem-leads to the eigenfur.ctions r,(x) and the

eigenvalues w, with which any forced motinn preblem (£(x,t) ¥ 9)

R

can bhe solved,

Transforming to modal coordinates p, (t) defined in the expansion:

W(x,t) = I py (0173 (0 ce(2)

leads to an infinite mumber of differential equations which are 5

uncoggled:
. 2
i.e, my Py + wpy) = fEOx,t)ry (x)dx ces(3)

L
where m;; = 6’1”"1)dx
Now if f(x,t) is a moving concentrated force, i.e.,

f(x,t) = =P,6(x-vt)

then (3).becomes:

my; (by *uipy) = ~Pory(Ve) vee(®)

The solution to (4) can be written immediately in terms of the
eigenfunctions and eigenvalues of the free vibration problenm,

For a moving mass, however, *

f(x,t) = -mp; §(x-vt)

)
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When substituted in (3), the right hand side becomes:

-m g Fa/0t2r; (x)8 (x-ve)dx = 3%w/atr; (x)] (- mg)

but 33/at2| = w(vt) + 20'(vt) + vzw"(vt) ;' = 3/ox
Xevt
2 2 2
using (2): w/ot’| s P{r,(vt)p; + 2vr,(vt)py + veri(vt)py)
gy Ty (VEIRy ¢ 2vry (viIpy + VIR (VIR

then (3) becomes:

myy (py + u'py) = -mp § (ry(vedpy + 2vry(vedpy ¢ Ve (velpy)
ooc(s)

In contrast to (4), equations (5) are not uncoupled, In fact all of
the vuriables p;, i = 1, « , appear in each of the infinite number
of differential equations, To make matters worse, each variable has
a time-variant coefficient, To date the only exact mathematical
treatment appears to be that due to Schallonkmp4 ivvolving a triple

infinite series equation for unknown Fourier coefficients,

Thus the whole concept of natural frequencies and modes of vie.
b ition loses its valus in quan.itative determination of the response
of a system with time variaut properties - uf which the moving mass
is but a special case. For every locaticon of the mass along the beam

we have a new infinity of eigenvalue solutions. With an infinite num-

(4) Schallenkamp, A., "Schwingungen von Tragern bei bewegten Lasten,"
Ingenieur-Archiv, v.8, 1937, pp. 182-198
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ber of locations for the mass to occupy, we thus have a double infinity
of eigenfunctions and eigenvalues.,

Equation (1) can, however, be t¢nlved aumerically - regardless of
the space and time dependent material properties and the forcing term,
In what follows we eliminate the space variable through the finite .
element process, The time variable is handled by a numerical in-
tegration procedure of common variety (predictor-corrector), In
essence therefore, we approximate our continuum description (1), by
a finite number of ordinary differential equations with time depen-

dent coefficients,

Continuum Description of the Movig;;ﬂass Problem

In previous work 4 a derivation was riven for the equation of

forced transverse motion of a beam modei of the M113 gun tube:

(EIy")" = -k(x,t)y" + (pAKo(t) + pAgsina)y"(x-2) + (PAXg(t) +
+ pAgsina)y' - mp(§ + 2v)' + geosa + v2y")8(x-vt) = PgAcOsa = pAy
vee(6)

This equation assumes that A, the beam cross section is uniform and
that v - the velocity of the moving mass My is constant. In that we
will be applying the equation to beam elements of uniform aﬁd equal
cross section the former assumption is consistent, This restriction

is not necessary to the generality of the method, The assumption of

(7) Simkins, T.E., Pflegl, G.. and Scanlon, R., "Dynamic Response of

the M113 Gun Tube to Travelling Ballistic Pressure and Data Smoothing .
as Applied to XM15C Acreleration Data," Watervliet Arsenal Technical
Report WVT-TR-75015, April 1975
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constant velocity is motivated by our desire to compare results with
the work of Ayre, Jacobsen and Hsu, In (6) the term k(x,t)y" is the
so called 'Bourdon' force, Terms in io represent transverse forces
induced by axial recoil acceleration when beam curvature and slope
are non-zero, Terms in pAg are due to the beam weight, Jone of
these forces are of interest in this report which deals exclusively

with forces induced by the moving mass:

i.e, £(x,t) = -mp(;i e 2V ¢ g+ VEYME(xeVt)  aa(D)

where a, the tube elevation angle, has been made equal to zero,
Thus the special version of equation (6) we will be concerned with

in this report:

Ely‘"' * pA; - _%(; * ZV,' + g v2y0')5(x-vt) ...(8)

where E,I,p, and A assume constant values, The left hand side of

(8) is recognized as originating from the simplest of beam theory,
i.e,, where the entire transverse deflection of the beam is assumed

to be du; to bending moment only, The right side of (8) therefore
represents the totality of applied loads, the first tsrm corresponding
to the inertia of mp; the second is a 'Coriolis' type load; fhe third
is due to the gravitational force on mp (its weight) and the fourth

is the 'centrifugal' force due to My following the beam curvature,

The Dirac - delta function -§- specifies that each of these forces
acts in a concentrated fashion at the location x = vt along the bean,

As written equation (8) is a continuum description of the problen,

® ©6 o &6 o6 o e o o & s
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tIsing the method of finite elements the space variable, x, will be
discretized - resulting in a set of ordinary differential equations

with time as the independent variable,
THE FINITE ELEMENT DISPLACEMENT METHOD

The basic procedure in finite element procedures is to consider.
the structure of interest as being composed of elements connected
together at adjacent attachment points - called nodes or grid points,
For the case at hand,the elements will be considered as short beams
connected and to end to form the longer beam structure of interest,

One then seexs to relate (at least approximately) the displacement at
any point interior to an element solely in terms of certain generalized
displacements assumed at its attachments,

Figure la shows the beam structure of interest (corresponding to
equation (8)) broken down into three shortor beam segments or eler _ts,
The generalized displacements at the points of attachment consist of
one translation and one rotation, (We could define more), It is ob-
vious that when adjacent elements are connected the element displace-

ments at each point of attachment must agree, i,e,, must be continuous,

1 2
e.g. u; = uz ' etc.
This continuity requirement between element displacements therefore »

reduces the number of generalized grid point displacements, For the
three beam elements shown in fig 1(a), the number of independent dis-
placements is thus reduced from twelve to eight upon connection of

the elements as shown in figure 1(b).
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Figure 1(a). Finite Element Breakdown of Beam Structure.

Figure 1(b).
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Figure 1

Interconnection of Beam Elements to Form Beam Structure.
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(c). A General Beam Element in Deformed Configuratiomn.
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Letting y(x,t) represent the transverse displacement of the beam con-
tinuum between the end points of a given element (fig 1(c)) the pro-
cedure is then to approximate y(x,t) as a linear function of the
generalized element displacements u;. (The assumptioﬁ of linearity
will lead to linear differential equations in the u:) Since there
are four u: per element - all of which are as yet arbitrary - we can
try a polynomial expression with four arbitrary constants, i.e, a
cubic:

y(x) = a, + a;x + azxz + a3x3 = aixi
where, in the latter notation we intend that a sum be performed over

repeated index i, with i ranging from 0 to 3.

The a, can easily be determined from tha four conditions:

y(0,8) = up Y'(0,t) = up ;
y(L,t) = u; ; y'(2,t) = u: ;

The result can be expressed as the vector product:

y(x,t) = a(x)u’ ; 0cx<t .. 9
explicitly,
3 2 3., _2_3 3 2
y(e,t) = {4 -357426 | £(6=20 %€ )| 367-26 | (6 -£)L } [uf
. -
e
2
where £ = x/% “;

>




Equation (9) constitutes a formal discretization of the continuum in
that all interior displacement information has been referred to the
end point, or element, displacements, The goal then is to determine
these displacements uf(t).

When subjected to sets of applied forces and constraints (boundary
conditions), the beam element responds according to the laws of
mechanics from which we are free to choose any one of several in
which to formulate the equations of motion of the element, It is very
convenient to employ the principle of virtual work for dynamic load-
121_5 - which states that in a virtual displacement &y(x) , of the
beam element from its instantaneous state of equilibrium, the incre-
ment in strain energy, i.e,, the virtual strain energy, is equal to
the sum of the virtual work done by all the forces including the

inertia loads.
ie, SU = 8W - (BayyAdx ves(10)

where SU represents the virtual elastic strain energy resulting from
the virtual work W of the applied forces and the virtual work of

the inertia forces. (p is the material density and A the beam cross-

sectional area,) In general the elastic strain energy due to a vire

tual displacement can be written:

3

U = {06€dXdydz oo-(ll)

.

where o0 is the induced stress due to virtual strain ég.

(5) Przmieniecki,J.S,, Theory of Matrix Structural Analysis, McGraw
Hill, 1968, p. 267

11
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The virtval work due to applied forces f(x,t) per unit length:
)
SW = gf(x,t)éydx

Thus (10) becomes:

A [A
foSedxdydz = 5f(x,t)6ydx -5p§syAdx ees(12)
v

llooke's Law specifies:

g = B¢
In beam theory, 8 = E, Young's modulus, and ¢ = hy", h being the
distance from the beam neutral axis to the fiber in which o is being

defined, Substituting in (12), the left term hecomes:
L 2 A
5 / Eh°y"8y"dxdydz = El.g y" y"dx
A

so thut (12) becomes:

) ) '
Elé‘y"dy"dx = éf(x,t)dydx -é oydyAdx ees(13)

Making use of the approximation (9}, i.e., y = ggx)gf;

Sy = _e_l_(x)dg_e and Sy'" = g"(x)&gf
Substituting these expressions in (i3): -

@
»
" n g
; ! oL, g 3

-
ot e 4

) L L
EI/§3°3"a"u®dx = ééﬁeif(x.t)dx - oAgéﬁeﬁau"dx
0 - W W L J R

-

Y I

T
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Since the virtual displacements u® are arbitrary:

L w L %
{ oAé'éidx e + { El.g a"a"dx }_lf = .5§_f(x,t)dx oo (14)

(a bar over a quantity denotes its transpose)

The nxn matrix coefficient expressions (n = 4 for the problem at hand)
of U and u deserve to be called m® and k° respectively and the
right hand term is the force vector f° whose elements replace the
distributed and applied forces present in the continuum problem,

These forces are considercd as being applied to the ends of the

olement ¢, The natrices Ef and 5? have been evaluated many times

6

in the literature and will simply be repeated here for beam elements

of four degrees of freedom,

n® = pAL/420

(6) Przmieniecki, J.S., Theory of Matrix Structural Analysis, McGraw
Hill, 1968, p. 81, 297
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To form the force vector f, the expression f(x,t) from equation (7)
is substituted into the right side of equation (14).

2 (2]
thus ‘f;e = - {)‘é mp(y +2vy' 4 g+ vzy")ﬁ(x-vt)dx

substituting the relation y(x) = _a_}_J_e:

2

_tf’ = 'mpg a(x) {gif + 2vg_'}'f gV g'g_e}ﬁ (x=vt)dx
. -mley (1 + ey (B ¢+ c3(t)u’) -mpg:l_(vt)
:'; XX 0 <Vt<’.
- -
% = 0 otherwise
y
F where cy(t) = A(vt)a(vt)

cp(t) = 2va(vt)a'(vt)

PN CACROE

cg(t) = via(vt)a"(vt)

Equation (14) can then be written:

\
. (@« me ()Y’ + mep(t)3 ¢+ (¢ mpes(e)y’ = -myga(ve)
:5 ves O:Vtil

‘ or simply,

X LCOES ¢+ y ()% ¢ k(t)u® = 9%(2) ves (15)

e ]
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Outside the interval 0 <vtefl , the time variant coefficients ci(t) and
a(vt) must be replaced by zeros, This can be accomplished by nullify-

ing the rnp factor outside this interval,

Equation (15) represants a set of n ordinary differential equations
with time dependent coefficients., They are the differential equations
of motion for any beam element of c:nsity p and section modulus EI
as well as cross-—sectional area A, All of these element properties

may differ from element to element,

STRUCTURE_EQUATIONS OF MOTION

The equations of motion for the combined structure, i.e,,
MU ¢ C(t)D ¢ K(t)U = E(t) v+ (16)

are formed as follows,

Each term of equation (15) constitutes a force - ?; , At the element
attachment points, i = 1 thru n, When all clements are joined the
resultant force at the connections (grid points) is the sum of the
individuai forces at the attachments, For example, the inertia forces
at the right end of the first element (cf, fig 1) are to be added to
those at the left end of the second element to yield the total inertia
force at the connection grid point,

i.e,, the inertia forces acting on the first element - element #1
in figure 1 - in the Ups Uy, Uz, and u, directions are the vector com-
ponents:

\yl 1 “1
7 H5Y
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Summation over repeated subscripts is intended and i § j range from 1

to n, Similarly for element #2:
102 . 2 “z
LY
Upon joining these two elements, W; combines with the force W% and
w}‘ with wi so that the resulting forces on the two-beam substructure
are, for the case n = 4:
H [~ 1 1 o 1 1 1 1 - o -
v S u ;jl
| 1 11 12 13 14 0 0 0 0 1 Ry
. ot
2 21 22 23 24 2 N
1, 2 1 1 1 1 2 2 2 2 1 G
‘1,'
: Vs T Y o e M2 sz Msa M Mi2 Mis i) | Y
* el A S S T R R S i
4 2 41 42 43 44 21 22 23 24 4
2 2 2 2 2 *2
v L O u
3 o 0 0 0 "3 "32 "33 34 1
2 2 2 2 2 =2
v O T T u
'i ! 4 N ¢ 0 0 0 T4 T42 T43 44 2
3
002
Y
3 -

Enforcing the equality of the displacements, velocities, and acceler-

ations of the attachments, i.,e,

nl ..2 = . ..1 .,2 = o .

ug = u; = Us and u = uy = U,

.l' " .d R é

where the upper case letter denotes that L3 , U 4 are gri point - ,.
accelerations in conformance with fiure 1(b). . :s
5"’.

4
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Hence in terms of grid ggint notation:

(v, b1 by, by 1y 0 - .’le
P! "1 M2 b3 Y34 0 o || .
5 31 3, ("is’"il)("i«t“‘iz) s e Gs
Y ) "o Va2 (“:3’"51) (hggv3) s 34 64 ,
¥s 0 0 ¥ K52 33 vl Us
Y 0 0 Va1 A Ved Lﬁs

ﬁ(t)g(t) ses the inertia forces acﬁng on the grid points
of a 2-element substructure, The other forces in the equations of mo-
tion for this structure are formed by similar superposition. Thus the
structure equations of motion are formed by overlspping and summing the
element m;tricu wherever a grid peint connection is made. For an N -
element beam there will be N-1 such cverlaps (shown schematically in
figure 2), ELach overlap will contain n/2 entries from the lower right
corner of the nxn matrix corresponding to the olement to the left of
the grid point - and n/2 entries from the upper left corner of the
matrix corresponding to the element to the right of this grid point,

These overlapping elements are to be summed,

17
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It is to be noticed from equation (15) that in general, the coeffiw
cient matrices u® , ¥®, and k°® consist of a constant part (null in the

case of 1?) and a time variant part which derives from the moving mass

mp.

is located within the length of a particular beam element, Only then

These time variant elements are nul’ except when t is such that my

are the time-variant components of the corresponding element matrix
finite, Thus in figure 2,one ccnceives of a conventional matrix of
constant coefficient multipliers of the acceleration, velocity, and
displacement terms plus a time variant set of components which propagate

in_a band along the diagonal of each structure coefficient matrix as the

moving mass traverses the beam in time., Thus at any instant only n of
the structure equations of motion possess time variant cosfficients -

n being the number of element displacements (degrees of freedom) con-
sidersd for each beam element - four for the case at hand, Thus the
prospect of solving the full set of equations numerically - without
incurring extraordinarily long computer run times - would appear to

be good. For example it is not uncommon to solve via computer, a

fifty degree of freedom transient prnblem in conventional structure
dynamics via the finite element technique - wher: all of the coefficients
are constant in time, It should therefore involve only a moderate in-
crease in computation time to allow four of these squations to take

on time-variant coefficients as in our problem of the moving concen-
trated mass, Roughly speaking one might expect that each time-variant
matrix element will create additional computation no greater than that '

caused by adding another degree of freedom to a conventional constant

coefficient problem, Thus a 50 degree of freedom problem - e,g.,
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twenty-four connected beam elements subjected to a moving concentrated

mass ~ could be solved with a computation time not in excess of a

ninety-eight degree of freedom problem in which all the matrix coef-

ficients are constant, ( gf(t), yft), and Ef(t) each coﬁprise sixteen -

time dependent components).

Boundary Conditions

A great convenience of the finite element procedure - as compared
say, to the Ritz or Galerkin procedures - is that all ambiguity is
removed in choosing the boundary conditions to enforce. ( This is due
to the particular stage of deduction at which the finite element ideal-
ization is invoked in a variational procedure*)}, In practice all one
has to do is mimic physical reality, For example, a beam with hinge

(simple) supports at each end requires that the corresponding displace-

ments vanish; e.g., in a three-element beam model, Uy = U, = 0, Simi-

v
MARR 4.¢ j.'

AT

larly a clamped cantilevered beam would insist that U, = U, = 0, In-
stead of specification of particular zero values, however, it is more
efficient to merely delete the corresponding rows and columns from the
coefficient matrices 1 , C, and KX of equation (16). Thus for the case [
of a three-element hinged-hir d beam, we simply delete the first and
the seventh rows and colums - om these matrices., Similarly we delete

the corresponding elements from any force vector F , appearing on the

*Conversations with Dr. Gary Anderson, Applied Mathematics and Mechanics

e
‘i
<
I_.
"
LES
right hand side of this equation, . !
-
h»
bt
Div, Benet Weapons Laboratory, Watervliet Arsenal, Watervliet, N.Y. §
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PROBLEM STATEMENT AND SOLUTION

For the purpose of comparing results achieved by finite elements
with those appearing in the literature, the problem to be solved is one
of three beam elements connected end to end to form a simply supported
beam having uniform cross section and material properties, A moving
mass, m, , is assumed to traverse the beam from left to right at a
constant velocity v - see figure 3,

Deleting the first and seventh rows and columns from the coefficient
matrices M,C and K along with the first and seventh components of the
vector F of equation (16) results in a six degree of freedom problem

- that is, six coupled equations of forced motion. These equations
will be solved numerically with mﬁ and its velocity v, serving as
parameters,

In reality we have no clairvoyance to guide th; choice of values
for my and v except, of course, to repeat those used in the literature
so that a comparison may be made., It appears, however, that the
values chpsen by Ayre, et al, were not compietely arbitrary in that
certain values of v will cause resonant (secular) behavior in the
moving force problem, From equation (3) we can verify that resonance
will indeed occur for any value v = v', such that mii(v') - 6. Al-
though applicable only to moving force problems, it is intuitively
plausible that extraordinary behavior in the moving mass problem
might occur for values of velocity not far removed from these values
v*, tHaving no 'closed form' analytical solution with which to an-

ticipate points of singular - or otherwise interesting - behavior, one

21
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Finite Element Model for Moving Mass Problem.
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can do no better than to at least allow the velocity of the mass to
range through the lowest v" which will cause m; to vanish, This
apparently was the reasoning behind the choice of velocities investiga-
ted by Ayre, et al, who performed experiments in which v was chosen

as v'/4, v'/2, and v" for the moving force and v'/4 and v'/2 for the
moving mass - v' being the first value of v to cause my to vanish,
i,e., the first resonant or 'critical' velocity of the moving force
solution, (Maintaining contact between the beam and mass for velocities
higher than v'/2 was apparently impossible,)

For the simply supported beam being considered:
mn(v) - civz - wi eee (17)

where @ = in/L, L being the overall length of the combined beam

structure and w; = ai VEI/oA 8

Table 1 lists tl e material constants and dimensions employed for the
three identical heam elements used in this work, From these values

one calculates from (17) for iel:

b«

. *

v = 899,13 in/sec .

N

We intend to examine numerical solutions for the moving force' and !

= 3

. the moving mass throughout the range 0 <v :_v' . k

;ﬁ Two primary references will be used as basis' of comparison: ;
Ei . (i) The exact solution for the moving force solution 8 which for

(8) Nowacki, W, gxnamics of Llastic Systems, Chapman § Hall Ltd,
London, 1963, p. 136

..........
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TABLE 1, MATERIAL PROPERTIES AND NOMENCLATURE

A Sy Ay B o T AT W
1

Material aluminum
P Density 3.14 x 10"“1bsec?/in?
g
L Overall Beam Length 32
L Length of each element 120,0 in
pAL beam ‘ass
mp Moving Mass 0,0, oAL/4, pAL/2
L Young's Modulus 1.0 x 107 psi
. A Beam Cross Sect. Arca 31
;
: I Beam Area Moment of Inertia (fixed by choice of w; below)
' h . Beam Thickness 2,0 in,
i u1/2n Beam Fundamental Frequency 1,25 hz
‘ * ] ‘ ]
v 'lass Velocity 100,, v /4, v /2, v
X v Fundamental Resonant Velocity 899,13 in/sec
24
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the case of a moving concentrated downward force -mpé(x-vt) is :

y(x,t) = -2mpg/pAL gsinanx(anvsinwnt - wnsinunvt)/wn(aivz-wg)

ees (i8)
The finite element solutions for the moving mass problem (Equation (16)
after imposing support constraints) with mp = 0 will be compared with

computations of (18) above,

(ii) The experimental work of Ayre, Jacobsen and Hsuz. The mass

velocities employed in this work were quasi-static v 0, and v = v'ld.
v'/z, and v'. The moving mass values chosen were mp = 0, and my =

pAL/4 and pAL/2 where pAL is the total beam mass.

Equation (16) is solved using Hamming's modified predictor-corrector
method which uses fourth order Runge-Kutta method suggested by Ralstonl®
for adjustment of the initial incremant and for cémputltion of starting
values, The method is taken directly from the IBM Scientific Subroutine
Package for the IBM System #360, re: Programmer's Manual # H20-0205
available_this laboratory., The method was found to be sbout four times
faster than using the Runge-Kutta method throughout the entire problem.

In general, run times in the order of 20 - 30 minutes on the 1BM model

44 computer,

(2) Ayre, R.S., Jaccbsen, L.S., and Hsu, C.S., "Transverse Vibration
of One and of Two Span Beams Under the Action of a Moving Mass Load,"
Proc. of First National Congress on Applied Mechanics, June 1951

(10) Ralston and Wilf, Mathematical Methods for Digital Computers,

Wiley and Sons, New York, London, 1960, pp. 95-109




-

Results =~ MovingﬁForce

Figures 4 through 7 show the transverse displacement of the beam at the
grid point locations x = L/3, 2L/3 as computed either by the finite
element method or by evaluation of the exact solution (18) - any dis-
crepancy between the results being too small to be discerned even in
plots of this scale, This is substantially less error than appears in
other treatments yielding approximate results.d.g

Using the relationship (9), i.e., y(x,t) = gﬂx)gf(t) with x = vt,
gives the displacement directly beneath the moving load to be compared
with the results of Ayre, et al, who recorded displacement information

exclusively at this location, Figures 8 - a,b,c shcw these comparisons

and it is obvious that the agreement with experiment is much better in

figurcs b and ¢ than in a, Actually, Ayre and his co-workers experiencnd

considerable experimental difficulty when the force was translated at
v'/d. Quoting from their publication2 in which the authors remark on
their disagreement with Schallenkamp's theorotical solution for the
moving force (evidently a three term approximation of expression (18)):
«.."The agreement is generally good [except at v*/4] where it has been
found that comparatively small errors in velocity may resuit §n marked
differences in the shape of the trajectory." ... In 8a the theoreti-

cal curve used by Ayre as a basis of comparison has been included.

(2) Ayre, R.S., Jacobsen, L.S., and Hsu, C.S., "Transverse Vibration
of One and of Two Span Beams Under the Action of a Moving Mass Load,"
Proc. of First National Congress on App.ied Mechanics, June 1951

(4) Schallenkamp, A., 'Schwingungen von Tragern bei bewegten Lasten,'
Ingenieur-Archiv, v.8, 1937, pp. 182-198

(9) Hutton, D.V., and Counts, J., '"Deflections of a Beam Carrying a
Moving Mass," Trans. ASME, Sept, 1974, p. 803
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The exceptional agreement (using only three finite beam elements) of

the finite element results for the moving force gives confidence in ex-
tending the technique to the moving mass problem - for which no simple

solution as (18) exists.

Results - Movigg_Mass

Figures 9 through 14 show the transverse displacement of the beam at the
grid point locations x = L/3, 2L/3 as computed by the finite element
procedure for various cases of velocity and mass values, Again use
will be made of relationship (9) to converc¢ this information to dis-
placement beneath the moving mass so that a direct comparison with the
experimental results of Ayre, Jacobsen, and lisu can be made, Figure
15 - a,b,c shows this comparison to be quite good = excellent agree-
ment occurring at the grid point locations., A closer look shows, however,
that the slopes of the curves geners:ad by the finite element analysis
are discontinuous at the grid point locations, The reason for this is
that the displacement approximation (9) is built from cubic polynomials
which are not continuous in the second derivative at the grid point
connections, Indeed, only continuity in y and y' were demanded in
constructing these p- .omials,

The discontinuities of y'(x) at grid points might not be serious if
it was not for a 'force' in the continuum equation of motion (8)...
mpvzy"(x). Thus at higher velocities jump discontinuities in y" wiil
cause increasingly powerful disturbances which are nonphysical iu

character, This is apt to be especially influential in armament

*Note: All displacements are normalized with respect to the displace-
ment which occurs at midspan due to a static load at this point.
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applications involving velocities considerably larger than v,

One approach toward rectification of this problem requires the
formation of higher-ordered polynomials which are continuous in the
second derivative across the grid points of the structur;. Higher
polynomials have additional coefficients and, as in the previous deri-
vation, these coefficients are equal in number to the element degrees

of freedom, i.e,, the generalized displacements u: .

The establishment of polynomial displacement functions proceeds in

the same manner as before, with the added conditions:

Y'0) = ug y"(s) = uf

The result is that y(x) will be approximated interior to an element by:

y(x) = a(x)u® ;

where é.and gfare now vectors with six components instead of four,

The new (*) element matrices are calculated according to equation
(14). The multiplication and integration was accomplished analytically
by a computer program called MANIP which was written in the FORMAC
language - giving analytical expressions as output, Sinilarly. new
expressions for ¢, Y and Cq for use in equation (15) were formed
using this program, E and f compose the constant elements of the

matrices éf and _ﬁf and are found to be:
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Figure 16 shows the improved results obtained through the use of the
quintic polynomial, Comparison should be made with the results obtained
via the cubic polynomial as shown in figure 15(a), The price paid,
however, is increased computation time due to the additi~nal degrees

of freedom induced through the use of the quintic, One also faces
increasing amount of ill-conditioning in the matrix equations of motion
due to the widely differing magnitudes induced in the coefficient mae
trices and their corresponding output variables, Future work will

concentrate on these problems and the use of less time-consuming

integration algorithms,
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Figure 16. Improved Results Using Quintic Shape Function. ;
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